تحلیل بیزی تقریبی داده های فضایی – زمانی با استفاده از یک میدان تصادفی مارکوفی گاوسی
نویسندگان
چکیده مقاله:
برای مدل بندی پاسخ های فضایی که در طول زمان مشاهده می شوند گاهی از مدل های سلسله مراتبی فضایی- زمانی استفاده می شود که در آن ساختار همبستگی فضایی –زمانی داده ها توسط یک میدان تصادفی پنهان گاوسی با تابع کوواریانس فضایی ماترن در نظر گرفته میشود. یکی از اهداف مهم در بررسی این مدلها برآورد پارامترها و متغیرهای پنهان و پیشگویی پاسخ ها در زمان های معلوم و موقعیت های معلوم فاقد مشاهده است. در این مقاله برای تحلیل این مدلها، ابتدا رهیافت بیزی معمولی ارائه می شود. به دلیل پیچیدگی توزیع های پسین و توزیع های شرطی کامل این مدل ها و استفاده از نمونه های مونت کارلویی در تحلیل بیزی معمولی، زمان محاسبات بسیار طولانی است. برای رفع این مشکل میدان تصادفی پنهان گاوسی با تابع کوواریانس ماترن، به صورت یک میدان تصادفی مارکوفی گاوسی در نظر گرفته میشود. برای تولید داده از این میدان تصادفی مارکوفی گاوسی از رهیافت معادلات دیفرانسیل جزیی تصادفی می توان استفاده کرد. سپس از روش بیز تقریبی و تقریب لاپلاس آشیانی جمع بسته برای به دست آوردن یک تقریب دقیق از توزیعهای پسین و استنباطها پیرامون مدل استفاده میشود. در نهایت در این مقاله یک مجموعه داده واقعی مربوط به میزان بارندگی استان سمنان در سال 1391، اندازه گیری شده در ایستگاه های هواشناسی این استان با مدل و روش های ارائه شده مورد مطالعه قرار می گیرد.
منابع مشابه
برآورد بیزی پارامترهای سیگنال در یک میدان تصادفی گاوسی
تاکنون مساله آشکارسازی سیگنال با استفاده از نظریه میدان های تصادفی توسط گروهی از آمارشناسان مورد بررسی قرار گرفته است. در این مقاله برآورد نقطه ای پارامترهای سیگنال یک میدان تصادفی گاوسی فضای مقیاس به روش بیزی را مورد بررسی قرار می دهیم. با توجه به پیچیدگی توزیع پسین پارامترهای این مدل و عدم وجود فرم بسته برای آن، با استفاده از روش مونت کارلوی زنجیر مارکوفی ( MCMC )، برآوردهای مذکور را تقریب ...
متن کاملتحلیل بیزی میدانهای تصادفی مارکوفی گاوسی با استفاده از پیشین مرجع
( به دلیل اینکه پایان نامه با نرم افزار فارسی تک نوشته شده است فایلهای word موجود نمی باشد و فایلهای فارسی تک در بخش سایر فایلها درج شده است ) میدان های تصادفی مارکوفی گاوسی (gmrf) برای مدل بندی داده های فضایی مشبکه ای مورد استفاده قرار می گیرند و بدین ترتیب کاربرد وسیعی در زمینه های مختلف آمار فضایی از جمله تهیه نقشه بیماری ها و تحلیل تصاویر دارند. در این پایان نامه، ابتدا یک میدان تصادفی م...
15 صفحه اولمدل بندی و تحلیل داده های فضایی ناگاوسی براساس آمیختن مقیاسی از یک میدان تصادفی چوله گاوسی بسته
در رگرسیون کلاسیک و فضایی معمولا فرض می شود که داده های تحت بررسی نرمال هستند. اما در عمل با موارد متعددی مواجه می شویم که در توزیع داده ها شواهدی از چولگی یا سنگینی دم ها مشاهده می شود. در اینگونه مسائل، خانواده توزیع های آمیخته مقیاسی از چوله نرمال روش مناسبی برای مدلبندی داده ها فراهم می سازد. در این رساله با هدف ارائه مدل های جدید و انعطاف پذیر که با مشکلات مدل های موجود مواجه نباشد، ابتدا...
15 صفحه اولپیش گویی داده های فضایی- زمانی با رهیافت بیز تقریبی
برای مدل بندی پاسخ های فضایی که در طول زمان مشاهده می شوند گاهی از مدل های سلسله مراتبی فضایی- زمانی استفاده می شود که در آن ساختار همبستگی فضایی- زمانی داده ها توسط یک میدان تصادفی پنهان گاوسی با تابع کوواریانس فضایی ماترن در نظر گرفته می شود. یکی از اهداف مهم در بررسی این مدل ها برآورد پارامترها و متغیرهای پنهان و همچنین پیش گویی پاسخ ها در زمان های معلوم و موقعیت های معلوم فاقد مشاهده است....
پیشگویی فضایی برای میدان تصادفی چوله گاوسی بسته
در اغلب تحلیل های آمار فضایی فرض بر این است که داده ها تحققی از یک میدان تصادفی گاوسی هستند، اما مشخصه های ناگاوسی مانند متغیرهای تصادفی نامنفی با توزیع چوله در اکثر زمینه های علمی دیده می شوند. مدل بندی این نوع داده ها با استفاده از میدان تصادفی چوله گاوسی، که براساس توزیع چوله نرمال چند متغیره تعریف شده و از انعطاف پذیری بیشتری برخوردار است، صورت می پذیرد. در این رساله خانواده توزیع های چوله ...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 10 شماره 2
صفحات 233- 260
تاریخ انتشار 2017-03
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023